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J. Phys. A :  Gen. Phys., Vol. 5, April 1972. Printed in Great Britain 

Parametrization of SU(3) orbits in E,  

J M CHARAP and P T DAVIES 
Department of Physics, Queen Mary College, Mile End Road, London El 4NS, UK 

MS received 29 November 1971 

Abstract. Using Michel and Radicati’s description of the stratification of E s  under the action 
of SU(3) we construct a parametrization of the SU(3) adjoint representation in terms of 
invariants and angles. This is the SU(3) equivalent of the SU(2) change from Cartesian 
coordinates to spherical polars. 

1. Introduction 

In theories involving nonlinear realizations of chiral symmetries on meson fields we 
are involved with constructing nonlinear, and often nonpolynomial, functions of the 
fields. These functions are defined through their power series expansions but the field 
theory is generally not well defined. The mesons are pseudoscalar field operators (more 
properly operator valued distributions) and consequently we have all the infinity 
problems of products of field operators at the same space-time point. 

Nevertheless, in order to use normal functional methods in constructing such objects 
as covariant derivatives (Gasiorowicz and Geffen 1969 and references therein) and 
superpropagators (Delbourgo 1970) (if the Lagrangian is nonpolynomial) we treat the 
field multiplets as real, c number quantities; that is, as coordinates in a real euclidian 
manifold. This allows us to differentiate, integrate and form power series expansions 
with respect to the fields. 

We are concerned in this paper with the group SU(3). Because the action of the 
group on the pseudoscalar mesons Mi (as usual these are assigned to the adjoint 
representation) defines Casimir invariants, and because we are often dealing with 
functions which are constructed only of the invariants, a change of coordinates from the 
Mi to a set of invariants and angles is desirable. This is particularly useful in handling 
integral transforms of invariant functions of the field multiplets, as exhibited for SU(2) 
in a recent paper by Delbourgo (1970). 

For real orthogonal groups and SU(2) with its triplet adjoint representation the 
change of coordinates is well known, being from Cartesian to spherical polars. For 
SU(3), however, where the adjoint group SU(3)/Z(3) is isomorphic only to a subgroup of 
a real orthogonal group, the equivalent change of coordinates with its associated 
Jacobian is more complicated. 

In 0 2 we review the simple SU(2) case in a rather complex language but this serves 
to illustrate the techniques we use in §§ 3 and 4 for SU(3). 
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2. The SU(2) stratification and parametrization of E ,  

The action of SU(2) on the real three dimensional euclidean manifold E,. Cartesian 
coordinates (xi}, is realized via the triplet matrices IC = nibi. The oi are the Pauli 2 x 2 
traceless hermitian matrices with the product law 

didj = di j  + icijkok. 

The matrices II belong to the selfrepresentation of SU(2), and 

= n;oi = unu- = niuoi U -  

for U E  SU(2). From this we can establish the well known isomorphism of the adjoint 
group SU(2)/Z(2) with S0(3), so the action on vectors is length preserving. Equivalently 
we could consider the SU(2) transformations leaving invariant the characteristic 
equation 

I C 2  -P(71)1 = 0 

where P(n) = Tr(m) = (ni)2. The action of the group partitions the manifold E ,  into 
orbits? of constant p. As IC is hermitian it has real eigenvalues, hence p 3 0 and the two 
cases, /3 > 0 and /3 = 0, distinguish for us two types of orbit. There is the null orbit 
with the little group the whole of SU(2), and the orbits of positive-definite ,!I (spheres) ; the 
little group in SU(2) being U(1). These are respectively of dimension: 0 and 2. If we 
define a stratum (Michel 1968) as being a set of points having the same little group up to a 
conjugation, then the action of SU(2) on E ,  can be said to partition it into two strata. 
each stratum being partitioned into orbits of the same type. A general point in the space 
must then include representatives from each stratum as this decomposition is group 
invariant, that is, we cannot go from one stratum to another by the action of the group. 
This is rather simple in this case as one stratum is the origin. We are just saying that a 
general IC can be represented by 

II = aq+bO 

where q has positive definite normalization. If  we take this to be unity, iTr(qq)  = 1 .  
then a is readily identified as ,//3 (Er) .  If we pick an qo in a particular direction then 

nioi = rUv:o,U- 

where U is a general element of SU(2). Thus we have a parametrization of the n, 
through 

In particular if we choose qo to be diagonal, 
general 15' 

ni = r i  Tr(o,UojU- ' ) v y .  
= 6,, , and take the eulerian form for a 

lJ = R , ( d ) R 2 ( W 3 ( $ )  

n,+in2  = r s in%ei#  

71, = rcosB. 

where Rk(r)  = exp( -&ixok), we recover the usual spherical polar form 

t The orbit ofn is the set of all L'nU ' transformed from n by all the Uof the group. The orbits are either iden- 
tical or disjoint, hence the partitioning by the group. 
$ If G is a Lie group acting differentiably on a manifold M and if H is the little group (closed in G) of an orbit. 
then that orbit is a submanifold of M whose dimension is : (dim G -dim H). 
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We note that for r > 0 the orbits are two dimensional as expected, our choice of qo 
having removed the I) dependence. Trivially, for r = 0, the orbit is just the origin. The 
Jacobian for the change of coordinates is r2 sin 8. 

3. The SU(3) stratification of E,, 

We now proceed to construct the equivalent parametrization for the eight components 
of the SU(3) adjoint representation M i .  The action of the group on the manifold E ,  is 
realized via the octet matrices M = M i h i ,  where the hi are the Gell-Mann 3 x 3 traceless, 
hermitian matrices with the product law 

1.h .  t j = - idij  . + ( d i j k  + & j A  * 

Michel and Radicati (1968) have studied the stratification of this matrix space under 
SU(3) and have shown that we have a partitioning into three strata. We give a very 
brief review of their results. 

The characteristic equation of the M is 

M 3 - M y ( M ) - p ( M )  = 0 

where 

y (M)  = iTr(MM) = (Mi)’ 

p ( M )  = tTr(MMM) = det M = t d i j k M i M j M , .  

As M is hermitian we expect three real eigenvalues and the condition for this is 

4y3 2 27p2 2 0. (2) 
Any M can be diagonalized by an element of SU(3), hence the orbits are exactly labelled 
by the two invariants y and p. The above inequalities distinguish the three strata. 

If 4y3 > 27p2,  M has three distinct eigenvalues, their sum must be zero, and the little 
group in SU(3) of such a diagonal matrix is U(l) x U(1). This is of dimension 2 so that the 
orbits are of dimension 8 - 2 = 6. This stratum is thus a two parameter family of six 
dimensional orbits. 

If 4y3 = 27 p2 > 0, we have a repeated eigenvalue, and the little group in SU(3) is U(2). 
The dimension of the orbits is thus 8 -4 = 4 and so we have a one parameter family of 
four dimensional orbits. 

Because of the repeated eigenvalue, such M satisfy a second degree equation which 
can be identified as 

(i) Generic stratum 

(ii) Special stratum 

(di jkMiMj)Lk = ($p(M))1’3M. (3) 
This is the only property of the special stratum that we shall use, but we would remark 
to the interested reader that elements of this stratum are very important to physics. 
Michel and Radicati suggestively name these charge elements and study their properties 
in detail. 

If 4y3 = 27p2 = 0, we have the trivial zero dimensional origin with little group the 
whole of SU(3). 

(iii) Null stratum 
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If we are now to construct a general point of the matrix space we know i t  must have 
the form 

M = uZ+bQi-cO 

where ZE generic stratum, QE charge stratum. The coefficients U ,  b (and c for complete- 
ness) are functions of the invariants " and ,U. If we choose a U E  SU(3) such that 
M = LTAMoU-' for MO diagonal 

M = U(aZo + beo)  U -  '. 
Now let us consider the diagonal charge Qo. I t  must be of the form (gk3  + h i , )  and. 

applying the charge condition (3), gives g = 0, or g = *v '3 h for any h. We will take 
the choice of g = 0, and will normalize with h = 1 .  The reason is that, with the particular 
form of the U we shall choose, the four dimensional nature of the charge orbits will be 
simply seen. Having thus chosen Qo as h,  ~ we take a diagonal generic element as i., . 
Then the generic and charge elements are orthogonal. $ Tr(ZQ) = 0. 

Finally, if the projections of M onto the generic and charge strata are given by 
a = m sin u and b = - n z  cos w,  we can use equations (1) to identify 

3 4 3  
cos 3tu = -p (M)n?  - j .  

7 
112 = +\ /?( .W) and 

The condition ( 2 )  ensures lcos 301 6 1, hence LL) is a real angle. 
We thus have, in the octet matrix space 

M = nz sin w Z -  nz cos wQ 

and so the general E ,  vector is given by 

Mi = 171 sin u Z ,  - 111 cos uQi 13) 

where the generic vector 

Z ,  = * Tr(kiUk3 C'- ' )  (5'1) 

and the orthogonal charge vector 

In the next section we explicitly construct these vectors in terms of the angular parameters 
of U. 

In obtaining the above form of M I  we have only used the fact that a general M must 
have projections into each stratum. With pedagogic intent we remark that in fact our 
particular decomposition of M is an example of a stronger result due to Michel and 
Radicati (1969 'The geometry of the octet', unpublished). They show that, if S is a 
generic element of the octet matrix space with ~ ( s )  = 1 and p ( s )  = 0, then the element 

Q(s) E ( d L , J I S , ) h  

is an associated charge element orthogonal to S.  Furthermore, an S can always be 
chosen such that for any M we have M = g. S+ p .  Q(s). 

Our generic vector, Z = l I l3U- ' ,  is a particular example of such an S, and 
Q = lJL,U-' = J 3  Q(z). 



Parametrization of SU(3) orbits in E ,  567 

4. SU(3) angular parametrization of E ,  

All that remains to do now is to put an explicit eight-parameter general U E  SU(3) into 
equations ( 5 )  and thus construct the vectors Zi and Qi. We can also construct, from 
equation (4), the Jacobian of the transformation from the Cartesian Mi to the invariants 
and angles. 

We choose a pseudoeulerian form for U, of the type 

rotation I[ rotation I[ rotation I[ rotation ] 
In terms of eight angles this can be taken as (Nelson 1967) 

[ general 1 spin hypercharge changing general I spin hypercharge 

= [T3(el)T2(e2)T3(e3)1T,(e4)[T3(e5)T2(e6)T3(e7)1T8(e8) 

where 

Tk(el) = exp( - +idl&) 

and we immediately see that as l i 8  commutes with T,, T, and T, then the charge vector 
Qi given by equation (5b) is four dimensional, depending only on the first four angles. In 
fact, the four parameter U' = T, T, T, T, forms a representation of the U(2) little group 
of Qo in SU(3). 

Similarly the generic vector Zi is six dimensional with the U" = T3T8 forming a 
representation of the U(l) x U(1) little group of 2'. 

The results for the charge vector are 

Q1 + iQ2 = 4J3 sin 0, sin2 it?, eiel 

Q, = 3 J 3  cos 8, sin2 +e4 
Q4 + iQ, = -3J3 sin 30, sin 8, exp{$i(O, - e,)} 
Q6+iQ7 = 3J3cos38,.sine4exp(-~i(8, +e,)} 
Q, = 3 3  cos, +e4 - I )  

and for the generic vector 

Zl + iz ,  = 5 sin e, cos e,( 1 + cos2 $3,) eiel 

+ cos2+8, sin e6 COS +e, expCi(8, + e, + e,)} 
- sin2+8, sin e6 cos $e, exp(i(8, - e, - e,)} 

Z, = 5 COS e, COS e6(1 + cos2+8,) - sin 8 ,  sine, COS 30, COS(B, +e,) 
Z, +iZ, = cos +e, sin 86 sin 38, exp(ii(8, + e, + 28,)) 

+3 sin +e2 cos 0, sin e4 exp(+i(d, -e,)) 
z, + iz, = sin +e2 sin e6 sin $6, exp{ -+i(e, - e ,  - 28,)) 

Z, = 343 cos 86 sin' 38,. 

-3cosfe2 cos 0 6  sin e4 exp{ -$(e, +e,)} 

The Jacobian for the change of coordinates is &m7 sin' 3w sin e6 sin 0' sin 8, sin2@, 
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and the angular ranges are 

o G el,e3,1j5 < 2n 

o G e 2 , 0 4 , e 6  G 71. 
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